Quick Start Guide

Software Version 4AOP2012 v1.0

March 2012
Table of contents

1. **INTRODUCTION** .. 5

 1.1. **PURPOSE** ... 5

 1.2. **HOW TO USE THIS DOCUMENT** .. 6

 1.3. **DEFINITIONS, ACRONYMS AND ABBREVIATIONS** .. 6

 1.4. **PEOPLE AND ACKNOWLEDGMENTS** .. 6

 1.5. **REFERENCING 4A/OP IN PUBLICATIONS** .. 7

2. **INSTALLING 4A/OP** .. 8

 2.1. **WHAT IS REQUIRED ?** ... 8

 2.1.1. **Compilers** .. 8

 2.1.2. **Tcl/Tk** ... 8

 2.1.3. **Gnuplot** .. 9

 2.1.4. **Resources** ... 9

 2.2. **INSTALLATION PROCEDURE** ... 9

 2.2.1. **System installation** ... 9

 2.2.1.1. **Summary** ... 9

 2.2.1.2. **Details** .. 10

 2.2.1.3. **Contents of the system installation** .. 10

 2.2.2. **User installation** ... 11

 2.3. **WAS THE INSTALLATION SUCCESSFUL ?** ... 11

3. **PREPARING THE SIMULATION** .. 13

 3.1. **PREPARING THE SIMULATION IN SCRIPT MODE** .. 14

 3.1.1. **Global variables** ... 14

 3.1.2. **Simulation definition parameters** .. 14

 3.1.2.1. **Run characterization parameters** ... 14

 3.1.2.2. **Aerosol/ice cloud run characterization parameters** .. 20

 3.2. **PREPARING THE SIMULATION IN GUI MODE** ... 21

 3.2.1. **Produce a GUI parameter file** .. 22

 3.2.2. **Open an existing GUI parameter file** ... 22

4. **RUNNING 4A/OP** .. 27

 4.1. **RUNNING 4A/OP IN SCRIPT MODE** ... 27

 4.2. **RUNNING 4A/OP IN THE GUI MODE** ... 27

5. **VIEWING 4A/OP SIMULATION RESULTS** ... 29

 5.1. **OUTPUTS IN SCRIPT MODE** ... 29

 5.1.1. **Output file description** ... 30

 5.1.1.1. **High-resolution radiance spectra** ... 30

 5.1.1.2. **Convolved outputs** ... 31

 5.1.2. **Statistics tool** ... 33

 5.2. **OUTPUTS in the GUI MODE** .. 34

 5.2.1. **Zoom** .. 34

 5.2.2. **User specific plots** .. 34

 5.2.3. **Examples** .. 34

6. **GENERATING YOUR OWN 4A/OP INPUT FILES** .. 37
6.1. ATMOSPHERIC PROFILES.. 37
 6.1.1. First step: preparation of the user atmosphere file .. 37
 6.1.2. Second step : modification of the appropriate atmosphere reading subroutine ... 38
6.2. SPECTRAL EMISSIVITY ... 38
6.3. INSTRUMENT SPECTRAL RESPONSE FUNCTION (ISRF) .. 39
 6.3.1. First step: preparation of the user ISRF file .. 40
 6.3.2. Second step: preparation of the appropriate ISRF reading subroutine .. 40
6.4. AEROSOL/CLOUD PHYSICAL PARAMETERS .. 41

7. APPENDIX : SIMULATION DEFINITION PARAMETERS... 42
 7.1. GLOBAL VARIABLES ... 42
 7.2. RUN CHARACTERIZATION PARAMETERS .. 44
 7.3. DIRECTORY DESCRIPTION .. 49

8. REFERENCES ... 50
1. Introduction

1.1. Purpose

The software 4A/OP is provided for an enhancement by NOVELTIS, in accordance with the convention signed between CNES, LMD/CNRS and NOVELTIS.

The objective of the software is to allow the fast simulation of the radiative transfer in particular over the infrared range either with a “pseudo-infinite” (high) resolution or with a spectral resolution of the simulated instruments (low resolution).

The 4A model is a line-by-line model. It allows a rapid computation of the radiative transfer without accuracy loss thanks to a prior creation of an optical thickness database. This database named Atlas contains the monochromatic optical thicknesses for the various atmospheric constituents (Scott and Chédin, 1981: [Ref. 1]). The atlases are created once and for all by using the line-by-line and layer-by-layer model, STRANSAC (Scott, 1974: [Ref. 3]; [Ref. 2]) in its latest 2000 version with up to date spectroscopy from the GEISA spectral line catalogue (Jacquinet-Husson et al., 1999, 2003, 2008 and 2011: [Ref. 4], [Ref. 5], [Ref. 6], [Ref. 7]). This concept has been developed and maintained at the Laboratoire de Météorologie Dynamique (LMD) under the abbreviation 4A for Automatized Atmospheric Absorption Atlas.

4A output is the radian spectrum in a user-defined spectral domain in the infrared region; the usual spectral domain is between 600 and 3000 cm⁻¹. 4A can be used for a wide variety of surface and earth atmospheric conditions; its use could be extended to extra-terrestrial atmospheric conditions. Spectra are computed at high spectral resolution (the nominal spectral resolution is 5.10⁻⁴ cm⁻¹, but it can be changed by users). They can also be convolved with various types of instrument function. Partial derivatives of the radian spectrum with respect to the temperature and gas mixing ratio can be also computed. They allow the model coupling with an inversion algorithm for the atmospheric constituent retrieval from infra-red radiance measurements.

4A heritage is from 4A2000 with its initial development at LMD supported under CNRS/ENS and CNES programs. CNES and CNRS/ENS support the continued advancements of 4A through a subcontract with NOVELTIS. NOVELTIS is in charge of the industrialization and distribution of the 4A software. The aim is to complete an easy-to-use product for several research group users that is also easy to integrate in operational processing chains. 4A/OP software is a version of 4A for distribution to registered users.

Numerous works have been achieved in order to improve the readability of the software code and to favour its portability and its maintenance. The available operational version includes:

- Regular updating and improvements;
- Graphical User Interface (GUI);
- Reference documentation;
- Website http://www.noveltis.fr/4AOP/ including an on-line registration form;
- Distribution with maintenance and assistance;
- Additional scientific functions:
 - User-defined spectral emissivity functions;
 - Spherical atmosphere;
 - Solar contribution;
 - Limb viewing including refraction;
 - Scattering for aerosol and cirrus contribution.
This Quick Start Guide for 4A/OP is intended for beginners with the 4A/OP software: it provides a quick way inside the most common 4A/OP features. For larger understanding of 4A/OP, one should refer to the Reference Documentation ([Ref. 10]) for 4A/OP where one can find the comprehensive description of the internal data, parameterisations, procedures and the physics used.

1.2. How to use this document

The 4A/OP Quick Start Guide is intended to help new user to begin using 4A/OP. It is divided into five parts: the installation guide, the preparation of the simulation, the first use of 4A/OP in script mode and the use of the graphical user interface (GUI; that has been developed from the existing code in order to make the software use easier), the visualization of the simulation results and the way to modify the user input files. These different parts help the new user through several examples to explore the main 4A/OP capabilities.

1.3. Definitions, acronyms and abbreviations

4A Automatized Atmospheric Absorptions Atlas
CNES Centre National d'Etudes Spatiales
CNRS Centre National de la Recherche Scientifique
GEISA Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information [Ref. 4], [Ref. 5]
IASI Infrared Atmospheric Sounding Interferometer
IGBP International Geosphere-Biosphere Program
LMD Laboratoire de Météorologie Dynamique
MODIS Moderate Resolution Imaging Spectroradiometer
NedT Noise equivalent temperature difference
RAM Random Access Memory
RTM Radiative Transfer Model
TIGR Thermodynamic Initial Guess Retrieval: Climatological library of about 2000 representative atmospheric situations from radiosonde reports [Ref. 8]

1.4. People and acknowledgments

The following persons were involved in building and improving the 4A model, as well as in writing the Reference Documentation.

Authors from LMD: Raymond Armante
 Noëlle A. Scott

Authors from NOVELTIS: Laure Chaumat
 Carsten Standfuss
 Bernard Tournier

4A/OP was developed under funding by CNRS and from CNES programs. Further development is supported by CNES.
1.5. Referencing 4A/OP in publications

If a user is presenting results obtained by using 4A/OP, the most complete way to reference it would be to reference the following:

2. Installing 4A/OP

The installation phase includes the installation of the algorithm folder tree with available files and the compilation of the full source code.

2.1. What is required?

The 4A/OP distribution package is supplied in a single tar file 4AOP-version.tar.bz2, where version corresponds to the current 4A/OP Software version number (presently 4AOP-2012-1-0). The file is compressed using bzip2, available at no cost from the Free Software Foundation.

The following files are sufficient for the installation process:

- README (file containing important information);
- 4AOP-version.tar.bz2 (4A/OP as compressed (zip) tar file).

Installation of 4A/OP on a UNIX system is performed using UNIX bunzip2 and tar commands and the GNU Make program.

4AOP-version.tar.bz2 is a compressed tar file containing the entire 4A/OP program (possible exception: large data base files which might be stored separately). This comprises several subdirectories with FORTRAN 90 source files (*.f90), a GNU-Makefile, UNIX shell scripts, user input files (*.dtp) and several other files including all necessary input and test data for 4A/OP.

2.1.1. Compilers

The code has been developed in Fortran 77 on SUN workstations and has been ported in Fortran 90 on SUN Ultra Sparc workstations under Solaris using the Forte 6.2 Fortran 90 compiler. 4A/OP has also been tested on PC Linux using the pgf90 compiler (Portland Group Fortran 90 compiler), g95/gfortran (GNU compiler), ifort (Intel compiler) and f90 (SUN compiler). The 4A/OP source code is FORTRAN 90 compatible and contained within several files *.f90.

Note: The different Fortran 90 compilers are proposed in the following order: f90 (SUN) (Linux or SunOS), ifort (INTEL) (Linux only), pgf90 (PGI) (Linux only), gfortran (GNU) (Linux only) and g95 (GNU) (Linux or SunOS). Fortran compiler is limited to 32-bit mode if it is not default mode (except in ifort case, UNKNOWN 32-bit limitation option). The user can define his/her choice by >> export PATH_F90=... (compiler with full path).

Moreover, a new routine written in C has been introduced and needs that a C compiler is installed on your system. 4A/OP has been tested on PC Linux using the gcc compiler (GNU compiler) and cc (SUN compiler).

Note: The different C compilers are proposed in the following order: cc (SUN) (Linux or SunOS) and gcc (GNU) (Linux or SunOS). C compiler is limited to 32-bit mode if it is not default mode. The user can define his/her choice by >> export PATH_CC=... (compiler with full path).

Important note: 4A/OP has been developed and tested on a big-endian architecture (Sun). In particular the optical thickness atlases are Sun binary files. On little-endian architecture (i.e. x86), be sure your compiler has the option that swaps bytes at file reading.

2.1.2. Tcl/Tk

The 4A/OP GUI needs that Tcl/Tk (at least version 8.4) is installed on your system. See www.tcl.tk for more information on Tcl/Tk.
2.1.3. **Gnuplot**

The visualization part of the 4A/OP GUI needs Gnuplot software to plot graphs. The GUI has been tested with the following version of Gnuplot: Unix version 4.0 patchlevel 0. See www.gnuplot.info for more information on Gnuplot.

2.1.4. **Resources**

The 4A executable occupies about one megabyte on disk only. It uses about 200 megabytes of memory. The associated files (sources and user input files) occupy about 20 megabytes of disk space. There are also the atlas files that can require up to 6.5 gigabytes of disk space. This volume depends on the user simulation needs.

The size of the output files is a function of the input simulation parameters, which you control via the file described in section Part I Section 5.2.5.2 “Run characterization parameters” of the Reference Documentation (Jacobian calculations can use lot of disk space).

2.2. **Installation procedure**

Invoking the UNIX commands bunzip2 and tar creates the 4A/OP main directory 4AOP-version/ just below the current directory including all necessary subdirectories. Simply type

```bash
bunzip2 4AOP-version.tar.bz2

tar xvf 4AOP-version.tar
```

in order to uncompress and “untar” 4AOP-version.tar.bz2.

Directory 4AOP-version/ should now have been created and should contain the following files and subdirectories:

- Makefile
- README, README.user.in, VERSION, configure, configure.in and the directories model/, gui/ and doc/.

There are two levels of installation: system and user. If you only want a single-user installation, read section 2.2.1 and then go directly to section 2.3. In case of multi-user, section 2.2.2 will describe you how to proceed to install for the different users.

2.2.1. **System installation**

2.2.1.1. **Summary**

Here are the instructions to build the main installation of 4A/OP, from the main directory 4AOP-version/:

```bash
./configure
make
```

The user has to install atlas files if they are not included in this archive (i.e. the directory model/datatl is empty). If the user atlas directory is /aaaa/atlas, the user can do either

```bash
cp /aaaa/atlas/* model/datatl
```

or

```bash
rmdir model/datatl
ln -s /aaaa/atlas model/datatl
```
2.2.1.2. Details

The configure step creates files (like makefiles) that need system configuration information. If this step leads to incorrect settings, you can modify these files by hand. In particular, you need to edit Makefile.4a for compiler settings.

The make step compiles. The compilation generates libraries, object files and executables.

2.2.1.3. Contents of the system installation

4AOP-version.tar.bz2 contains the entire 4A/OP program (possible exception: large data base files which might be stored separately). There are several directories that should be included in the installation (i.e. the directory where ./configure and make have been done; see above):

model/ The model itself. This comprises several subdirectories with Fortran 90 source files, makefiles, UNIX shell scripts, user input files and several other files including all necessary input and test data for 4A/OP.

gui/ The graphical user interface for the model. This comprises Tcl/Tk sources and library, gnuplot scripts and on-line help for the GUI.

doc/ The documentation for 4A/OP.

Be sure then that the directory model/ contains the following subdirectories:

```
datatl/   datscat/   lsrf/    outputasci/   scslib/
datemis/  guiparam/  lib/     outputbin/   srclib/
datemis/  input/   libexe/   scripts/
```

The subdirectory model/libexe/ should contain the executable files aaaa, atmformat, lirespc4a, lirespi4a, statanalys.

Six user input files are necessary to completely specify all 4A/OP input parameters. These files are read by the 4A/OP main program aaaa through several subroutines which set up all input parameters required for the simulation definition.

- One user interface file has a predefined filename: para4a.dtp. It is located in the subdirectory input. This ascii file has to be edited manually (or interactively if the user does use the GUI) in order to set several switches (e.g., trace gas selection, convolution mode), and to set various computational parameters, to specify the wave number range of interest, etc. (see section 3.1.2.1);

- Another user interface file is needed if aerosol contribution is required; its predefined filename is parascat.dtp. It is located in the subdirectory input. This ASCII file has to be edited manually (if the user does not use the GUI) in order to set several parameters, to specify the aerosol model, the number of aerosol layers, etc. (see section 3.1.2.2);

- Four other user input files are necessary:
 - One deals with the atmospheric state (profiles) to be simulated (see section 6.1), located in the subdirectory datam,
 - One with the spectral emissivity (see section 6.2), located in the subdirectory datemis,
 - One with the aerosol physical parameters (see section 6.4), located in the subdirectory datscat,
 - And one with the instrument function (see section 6.3) for an instrument simulation case, located in the subdirectory lsrf.
2.2.2. User installation

If a user wants to install a local 4A/OP working directory, go to the 4A/OP installation directory (i.e. the directory where ./configure and make have been done; see above) and type:

```bash
make INS_DIR=/home/user/4AOP installuser
```

where /home/user/4AOP is the 4A/OP install directory for the user. See the README file in the user directory (/home/user/4AOP in our example) for instructions to use 4A/OP as a user.

2.3. Was the installation successful?

In order to check if 4A/OP has been correctly installed, some reference input files have been defined and some reference output files created (on SUN station!). All relevant test input files are located in directory model/input/ and test output files are located in directory model/outputascii/.

A UNIX shell script in the directory model/src/lib/, CasTest (for details, see part III.3 in the Reference documentation), directs 4A/OP to produce output corresponding to some sample problems.

1. Execute 4A/OP for several tests:

```bash
cd model/src/lib
./CasTest
```

Please note that this run test as well as the test sequence described below will use the following user input files which already exist in model/input/ as well as in model/datatm/, model/datemis/, model/datscat/ and model/isrf/:

- `input/para4atest*.dtp`
- `input/parascat*.dtp`
- `datatm/atm4atest*.dsf`
- `datemis/spemis*.dat`
- `datscat/aerosols_*.*dat`
- `isrf/isrf*.dsf`

2. Now the following files should have been created:

- `datatm/atm4atest*.ddb`
- `isrf/isrf*.ddb`
- `outputbin/spc4a*test*.ddb`
- `outputbin/spi4a*test*.ddb`
- `outputascii/spc4a*test*.plt`
- `outputascii/isrf*.plt`
- `src/lib/CasTest.log`
3. The output is written to files spi4a0001testtest1infb1.plt, spc4a0001testtest1testb1.plt, etc, in the directory outputascii/. To ensure the code is operating properly, you should compare your results with the contents of the corresponding files provided in the release package, named spi4a0001testtest1infb1.plt_ref, spc4a0001testtest1testb1.plt_ref, etc, which were generated by 4A/OP on our Solaris Sun workstation. The contents of these files should be essentially identical with the corresponding *_ref files (note that the numerical results may differ somewhat depending on the computer system and then the compiler used).

The script performs fourteen tests for testing different simulation conditions with 4A. These tests are based on the ~/input/para4atest*i.dtp (*i = 1,14) input files. After each execution of 4A/OP, the corresponding sp*i.plt_ref reference files in ~/outputascii/ and the newly generated sp*i.plt files are compared using the UNIX diff command. The script performs also three more tests for testing the atmospheric profile and instrument function building.

For all tests, the basic scenario is the same. They only differ in wave number settings, simulated atmosphere state, convolution mode selection, simulated instrument, Jacobian computation (only in Test5) and scattering effects. Test8 is the most time consuming.
3. Preparing the simulation

After 4A/OP has been successfully installed, the program can be easily executed either by using the Graphical User Interface (GUI) or in script mode. See the file README in the user installation directory.

Preparing a 4A/OP simulation requires (Figure 1):

- setting up some global variables and simulation definition parameters;
- providing 4A/OP with some input files (atmospheric profiles, emissivities and instrumental function).

![Software flowchart (inputs, outputs & processes).](image)

In this section, input files are already provided and we concentrate on setting up the global variables and simulation definition parameters. See section 6 for more insight in the preparation of new input files.

In script mode, the global variables and the definition parameters are defined manually respectively in the run shell script and in one (or two) parameter file(s). When running 4A/OP in GUI mode, these inputs are defined interactively in menus.
3.1. Preparing the simulation in script mode

3.1.1. Global variables

These variables are user-defined in the run shell script and have to be changed manually in this file. We use as an example the run shell script “run4a_example” located in “model/scripts” directory in your user directory. Open this file. The following lines in the script represent the global variables needed by 4A/OP:

```
set INS=test
set ATM=test
set ATMPROF=0001
set RSTR=example
set RS

CA=
set NUMIN=645
set NUMAX=950
set UNIT=4
```

More in detail, the simulation definition parameters are:

- **INS** is the indicator of the simulated instrument (instrument function ISRF) stored in the file named `isrf(INS)(CASE).ddb` (in model/isrf);
- **ATM** is the indicator of the atmospheric database stored in the file `atm4a$(ATM).ddb` (in model/datatm);
- **ATMPROF** is the index of the atmospheric profile read in the atmospheric database stored in the file named `atm4a$(ATM).ddb`. The range of profile indexes and their meaning depend on the atmospheric database;
- **RSTR** is the indicator of the parameter file `para4a$(RSTR).dtp` (in model/input);
- **RS

CA** is the indicator of the parameter file `parascat$(RS

CA).dtp` (in model/input);
- **NUMIN** is the beginning in wave number of the extraction for the conversion from the output binary file to an ASCII file;
- **NUMAX** is the end in wave number of the extraction into an ASCII file;
- **UNIT** is the Jacobian unit index for Jacobian ASCII outputs (see the meaning of the different indexes in Table 4 of appendix).

The complete list of global variables is found in Table 4 of the appendix.

3.1.2. Simulation definition parameters

3.1.2.1. Run characterization parameters

You will then modify the model parameter file, named `para4a$RSTR.dtp` ($RSTR$ having been defined as global variable, see above section 3.1.1) and stored in the input directory. To refer to the complete meaning of these parameters, please refer to Table 4 and Table 5 of the appendix. Such a file is displayed below (para4aexample.dtp in your input directory):

```
'AAAA'
' Geometry Identifier (EVIEW/LIMB) GEOMID' 'EVIEW'
' Viewing configuration (UP, DOWN, DOWNUP, UPDOWN) TRAJET' 'UP'
' Upper limit of simulation (hPa/km) PZUP' 0.05
' Lower limit of simulation (hPa/km) PZDOWN' 1013.25
' Observation level (hPa if EVIEW/km if LIMB) PZ0BS' 0.05
' Index for the Emissivity of the upper level EMUP' 100
' Temperature of the upper level TUP' 4.
' Index for the Emissivity of the lower level EMDOWN' 100
' Temperature of the lower level TDOWN' 0.0
' Geometric tangent height (km) (LIMB only) ZGTAN' 0.
```
3.1.2.1.1 Viewing and geometric configuration definition

This section defines the terminology used for the viewing and geometric configuration of the radiative transfer computation in Table 1. The various viewing configurations are illustrated by Figure 2 to Figure 10.
Table 1: Terminology for the viewing and geometric configuration of 4A/OP.

Important note 1: User-defined angles need to be scaled to surface at z=0 in order to take into account spherical atmospheres (see section Part III 1.3 of the reference documentation). The zenith angle at ground (z=0) is given by:

$$\theta_0 = \arcsin \left(\frac{R+z}{R \sin(\theta(z))} \right)$$

where R is the Earth radius and $\theta(z)$ the zenith angle as function of altitude z.

Important note 2: If the user has specified in configuration DOWN a solar zenith angle different from the viewing zenith angle, no sunlight is observed if the sun is completely outside the instrument's field of view. The simulation result will be identical to that obtained in nighttime conditions.

If the user has specified in configuration DOWN a solar zenith angle equal to the viewing zenith angle, the simulation considers that the instrument's field of view is fully occupied by the solar disk (SECTTASUN is set to 0, TUP to 6000K and EMUP to 100). If the user wishes to simulate a situation where the solar disk partly covers the instrument's field of view, he has to adjust the following specifications:

- Specify SECTTASUN as for a nighttime situation;
- Specify the upper temperature TUP to the solar surface temperature (6000K);
- Specify the upper emissivity EMUP according to the fraction of the solar disk within the instrument's field of view. Do not forget to generate the file spemis$(EMUP).dat$ if it does not exist already.
Ground surface viewing zenith angle

Upper level
Observation level

Lower level
Observer

Ground surface

Figure 2: Nadir viewing (TRAJET = UP)

Figure 3: Viewing with ground surface reflexion (TRAJET = DOWNUP)

Figure 4: Zenith viewing (TRAJET = DOWN)

Figure 5: Viewing with cloud reflexion (TRAJET = UPDOWN)
Figure 6: Limb view through the tangent point (TRAJET = DOWNUP). The user specifies background temperature and emissivity (cloud or sky), tangent height and the lower level below tangent height. The observer must not be specified above the background level.

Figure 7: Limb view of a cloud top, including reflection of downward terrestrial and solar radiation (TRAJET = DOWNUP). The user specifies background temperature and emissivity (sky or cloud), cloud top temperature and emissivity, tangent height, the lower level above tangent height, and the solar zenith angle θ_s (if background is sky). θ_s is fixed to 55°. The observer must not be specified above the background level.

Figure 8: Limb view of a cloud top (TRAJET = UP). The user specifies cloud top temperature and emissivity, tangent height, and the lower level above tangent height.
Figure 9: Backward limb view of a cloud bottom, including reflection of upward terrestrial radiation (TRAJET = UPDOWN). The user specifies background temperature and emissivity (Earth surface or lower cloud), cloud bottom temperature and emissivity, tangent height, and the upper level above tangent height. θ_2 is fixed to 55°. The observer must be specified between upper level and tangent height.

Figure 10: Backward limb view of sky or a cloud bottom (TRAJET = DOWN). The user specifies background temperature and emissivity, tangent height, and the observation level above tangent height.
3.1.2.2. Aerosol/ice cloud run characterization parameters

The variable $\$RSCA$ initialized through the makefile identifies the parameter file $\text{parascat}\$RSCA.dtp$ that contains the aerosol/ice cloud microphysical and optical user parameterisations (this file is stored in the directory input). Specifying $\$RSCA$ to the empty string, 4A/OP is executed in the same way as the reference code by reading the file $\text{parascat}\$.dtp$, delivered with the software package.

An example is displayed below, but you can refer to the complete meaning of these parameters with section 5.2.5.3 in the Reference Documentation.

```
' Disort(DIS), SOS(SOS) or no scattering (NO)   FLAG_SCAT'     'DIS'
' Number of aerosol layers (<=Cst_nlaeromax)       NLAERO'     2
' Aerosol model                                   AEROMOD'     'mitr00' 'soot00'
' reference optical thickness at 10 micron         AOTREF'     1.5 0.5
' Vertical level where aerosol is present         LAYAERO'     33 35 38 38
' Single scattering albedo (const)                OMEAERO'     0. 0.
' Asymmetry parameter (const)                       GAERO'     0. 0.
' Number of phase function Legendre coeffs.          NMOM'     10
' Number of DISORT streams (even and >2)          NSTREAM'     10
' DISORT conv. crit. for beam source [0.d0,0.1d0]   ACCUR'     0.009
' DISORT print flag, input parameters             PRNT(1)'     .FALSE.
' DISORT print flag, fluxes                        PRNT(2)'     .FALSE.
' DISORT print flag, radiances, user polar ang.    PRNT(3)'     .FALSE.
' DISORT print flag, transmittivity/albedo         PRNT(4)'     .FALSE.
' DISORT print flag, phase function moments        PRNT(5)'     .FALSE.
' DISORT header string (<128 characters)          DISHEADER'     '4AOP_DISORT test'
```

Warning:
This warning concerns the use of the $RESPEC$ parameter (in the para4a\$RSTR.dtp file) in the case of a run requiring the use of 4AOP with DISORT (in order to include scattering for aerosol contribution for example). It is recalled that, in script mode, this can be done by setting up the parameter $\$RSCA$ as follows: $\$RSCA$ = ‘’ (empty string).

Eventually, the call of DISORT may considerably increase (up to 15 times depending on spectral regions) the computing time with respect to 4AOP in stand alone.

A way to attenuate this slowing down has been to perform a contraction of the optical thicknesses in each layer before calling DISORT. This contraction is left to the choice of the user and is defined by the value of the $RESPEC$ parameter. Since this value may impact the quality of the results, the value for this parameter has to be carefully chosen.

For indication only:
- A contraction at 0.02 cm⁻¹ ($RESPEC=0.02$) is an acceptable compromise between computing time (about 3 times slower "only" than 4AOP) and accuracy for “window” channels but can lead to errors greater than 5K in channels sounding the upper part of the atmosphere.
- A contraction of 0.002 cm⁻¹ ($RESPEC=0.002$) increases the computing time by about 15 times, but provides a good accuracy for all the wavelengths range (error smaller than 0.2K, except in region at 15 μm, where it can reach 0.5K).

As a consequence, and in order to correctly and coherently assess the impact of aerosols with respect to any reference “clear sky” situation, it is recommended to compute this “clear sky” radiance using 4AOP with DISORT. (ie $\$RSCA$ = ‘’)

NB: A way to accelerate the computing time in case of the use of 4AOP with DISORT is in progress.
3.2. Preparing the simulation in GUI mode

The simplest way to use 4A/OP is to launch its Graphical User Interface:

`./4Agui`

This program is in the *gui/bin* directory of the system installation. Make sure this directory is in your user PATH or launch *4Agui* from this directory.

Launching it while open on the general page of 4A/OP GUI (see Figure 11).

The GUI allows the user to create a basic 4A/OP input file by selecting values with buttons, pull-down menus, and text fields. It should be particularly useful to the new user.

The GUI aims at wrapping the existing software (and the process management) in order to avoid source modifications. The dependency between parameters are kept and are implemented as a black box for the user. The GUI guides the user's choices according to the parameter dependencies: some entries (labels) are disabled if not required and warning messages appear if the user enters no compatible values with his/her experiment definition.

The programming language used to implement the GUI is Tcl/Tk (Tool command language / Tool kit), version 8.4 at least, and it uses the library BWidget.

![Figure 11: Screenshot of the GUI first page that shows the general parameters required for a 4A run.](image-url)
3.2.1. **Produce a GUI parameter file**

The 4A/OP GUI allows through its five pages to define the simulation parameters: “General” (see Figure 11), “Spectral conditions” (see Figure 12), “Observation configuration” (see Figure 13), “Molecules” (see Figure 14) and “Aerosol/cloud contribution” (see Figure 15).

By clicking the button “Guide” available in the page “General”, a help/guide page appears (see Figure 16). It explains step by step the use of the GUI for the parameter definition.

Go through the five pages of the GUI and adjust to your own simulation parameters.

When changing the values in five pages of the 4A/OP GUI, a parameter file with a format specific to the GUI is created in order to store all the parameters (global variables and definition parameters) required to run the 4A model from the GUI.

Save your experiment state into a file using “Save” or “Save as” (menu “File” of the GUI).

This GUI parameter file has extension *.4a.

3.2.2. **Open an existing GUI parameter file**

Available GUI parameter files can be open (menu “File / Open”) for loading parameters that have been already used and recorded. Such parameter files are saved by default in the directory model/guiparam/.
Figure 13: Screenshot of the page concerning the observation configuration parameters.
Figure 14: Screenshot of the page concerning the molecule parameters.
Figure 15: Screenshot of the page concerning the aerosol/cloud parameters.
Guide

This section is a step by step help in the use of this GUI from parameter definition to 4A/OP model outputs visualization. It considers that you have a minimum knowledge on the physics underlying the 4A/OP model. This guide only focuses on important parameters required to set a particular simulation.

- Create a new parameter set Menu File/New.
- In the General page, choose the Atmospheric profile indexes you want to use. Each index corresponds to a specific type of profile in the atmospheric database. See section Atmospheric profile indexes for a description of the profiles for the default atmospheric databases.
- In the Spectral conditions page, choose the spectral limits for the computation in the section Spectral limit (radiative transfer computation) and those that will be used only for visualization In the section ASCII extraction spectral limits (visualization).
- Choose the spectral sampling case: check Pseudo–infinite to produce a high resolution spectrum and check Instrument case to simulate a radiance measurement. For the last one choose the Instrument function (ISRF) you want to use.
- In the Geometric configuration section of the Observation configuration page, choose the Viewing configuration you want to use. Each of the four possibilities corresponds to a specific configuration of the radiative transfer geometry. See section Viewing configuration for an illustration of each of them.
- Set the upper and the lower levels.
- In the Molecules page, select the molecules you want to use.
- Save your set of parameters on a .4a file Menu File/Save.
- Open the log window, Menu Run/View output log.
- Run the 4A/OP model, Menu Run/Run 4A model.
- Wait for the end of the simulation. The time needed depends on the kind of simulation you choose. Check the log of 4A/OP model to see if the simulation goes well.
- Visualize your results using menu Visualization/Spectrum in radiance. Select the profile index [see point 2] you want to visualize and click View.
- Print your results using menu Visualization/Spectrum in radiance. Select the profile index [see point 2] you want to print, click Print and choose the name of the graphical file (postscript, PNG or TIF).

Figure 16: Screenshot of the GUI guide page that appears by clicking the button "Guide".
4. Running 4A/OP

4.1. Running 4A/OP in script mode

In the run shell script, a target is specified in order to point at the process that the user wants to execute (make target). Presently, in order to compute the radiative transfer and produce ASCII result files, the target name is:

- in the case of “infinite” resolution spectra: `runlirespi4a`
- in the case of spectra convolved with an instrument function: `runlirespc4a`

If the user wants BINARY output only, the corresponding instruction is:

- `make runspi4a`
- `make runspc4a`

Going back to our example, you need to type:

```
./run4a_example
```

in directory `model/scripts` or invoke `run4a_example` by using the complete path to `scripts` whilst being in a different directory.

The entire command line executed in the run shell script is (for a convolved spectrum):

```
make -f ../srclib/makefile runlirespc4a INS=$INS CASE=$CASE ATMPROF=$ATMPROF ATM=$ATM RSTR=$RSTR RSCA=$RSCA NUMIN=$NUMIN NUMAX=$NUMAX UNIT=$UNIT
```

where the variables are the global variables described above (section 3.1.1).

If you type the instruction “make help” (from the directory `model/srclib`), you get a list of executions available when using the program make.

4.2. Running 4A/OP in the GUI mode

Run of 4A/OP is launched via a menu choice.

Select “Run 4A/OP” in the menu “Run”.

The GUI produces a script file to run 4A from the user’s choices presented above (see section 0). The variable `$RSTR` in script mode (cf. section 3.1.1) is equal to the character string defining the GUI parameter file (without extension). For example, if one creates a set of parameters that is saved under the name `test.4a`, the GUI creates the required 4A/OP parameter file called `input/para4atest.dtp` and a run shell script named `scripts/test`. Then, the model runs.

The user has the possibility to monitor the run development by watching the log window that can be open and closed at any time with the menu “Run / View output log” (see Figure 17). The model runs in background then the GUI remains active and the user can move all over the GUI. The user is able to stop the run at any time thanks to an aside “Stop” button.
Write the result file headers

fresui:
/data1/chaumat/4AOP-2006-1-0-beta-1/model/outputin/spi4a0001example1inf.dbb

titro:
spectre haute resolution

nbx,nopro,deids,respac,omin,omax,ndsd,ndsf:
l i 15.0 0.05=0 705.0 935.0 45 49
 29857 29923
 i rds: 5 35
 rmax: 30001 30001

Close the files: unit 4 9 10 2

end of the radiative transfer computation

This window appears by choosing the menu entry "Run / View output log".
5. Viewing 4A/OP simulation results

5.1. Outputs in script mode

4A/OP produces only one binary file containing all results. An interface program (sections II.1.1.4 and II.1.1.5 in the reference documentation) transforms the binary file into ASCII files. Two simulation configurations are possible: "Pseudo-infinite" case and "Instrument" case. The output file names produced are listed in the table below (Table 2) according to the simulation case.

Output data in ASCII files always include radiances and brightness temperature and can also include other quantities (Jacobians and/or transmittances) for an instrument simulation case.

We will now illustrate the 4A output capabilities for radiance spectra through two examples. In addition, the use of a statistic tool on 4A/OP outputs is also shown.

<table>
<thead>
<tr>
<th>Simulation case</th>
<th>Content</th>
<th>Binary file names</th>
<th>ASCII file names</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In directory outputbin</td>
<td>In directory outputascii</td>
</tr>
<tr>
<td>"Pseudo-infinite"</td>
<td>High-resolution radiances</td>
<td>spi4a$(ATMPROF)$(ATM)$(RSTR) $(RSCA)$(INS).ddb</td>
<td>spi4a$(ATMPROF)$(ATM)$(RSTR) $(RSCA)$(INS)b1.plt</td>
</tr>
<tr>
<td>"Instrument"</td>
<td>- Convolved radiances</td>
<td>spc4a$(ATMPROF)$(ATM)$(RSTR) $(RSCA)$(INS)$(CASE).ddb</td>
<td>spc4a$(ATMPROF)$(ATM)$(RSTR) $(RSCA)$(INS)$(CASE)b1.plt</td>
</tr>
<tr>
<td></td>
<td>Possible additional quantities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Partial derivatives of the radiance (Jacobians) with respect to the temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jacobians with respect to the molecule mixing ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jacobians with respect to the surface emissivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transmittances</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: 4A/OP output file description
5.1.1. Output file description

5.1.1.1. High-resolution radiance spectra

Make a copy of the run shell script (in your scripts directory):

```
cp run4a_example run4a_test1
```

Then, edit directly the command lines in the new run shell script:

```
set INS=inf
set CASE=
set ATM=test
set ATMPROF=0001
set RSTR=test1
set RSCA=
set NUMIN=719
set NUMAX=721
```

and change the target runliresp4a into runliresp4a in the following command line:

```
make -f ../srclib/makefile runliresp4a INS=$INS CASE=$CASE ATMPROF=$ATMPROF
ATM=$ATM RSTR=$RSTR RSCA=$RSCA NUMIN=$NUMIN NUMAX=$NUMAX UNIT=$UNIT
```

Then, simply run the script:

```
./run4a_test1
```

In this first example, 4A/OP computes the very high-resolution radiance from 719 to 721 cm$^{-1}$ every 5×10^{-4} cm$^{-1}$ (“infinite” spectrum). The corresponding input parameter file para4atest1.dtp in your input directory contains all model parameters for this simulation.

The spi4a0001testtest1infb1.plt file contains the 4A/OP output corresponding to this input. Columns 1 through 3 are: the wave numbers (cm$^{-1}$), the radiance at the top of the atmosphere (W/(m2 str cm$^{-1}$)) and the corresponding brightness temperature (K). The results for this first example are shown in Figure 18. A good way to verify that 4A/OP is operating correctly on your system is to use your favourite graphics software to read spi4a0001testtest1infb1.plt and compare the results visually.
5.1.1.2. **Convolved outputs**

5.1.1.2.1 **Convolved radiance spectra**

Now, make a new copy of the run shell script (in your *scripts* directory):

```bash
cp run4a_test1 run4a_test8
```

Then, edit directly the command lines in the new run shell script:

```
set INS=iasi1c
set CASE=
set ATM=test
set ATMPROF=0001
set RSTR=test8
set RSCA=
set NUMIN=645
set NUMAX=2760
set UNIT=1
```

Then, simply run the script:

```
m./run4a_test8
```
In this second example, 4A computes the convolved radiancé that would be measured by the instrument IASI, from 645 to 2760 cm\(^{-1}\) with resolution of 2.5x10\(^{-1}\) cm\(^{-1}\) (IASI spectrum sampling). The corresponding input simulation parameter file is \texttt{para4atest8.dtp} in your input directory.

The spc4ao0001testtest8iasi1cb1.plt file contains the 4A/OP output corresponding to this input. Columns 1 through 3 are: idem as the first example above. The results for this second example are shown in Figure 19.

![IASI spectrum calculated by 4A](image)

Figure 19: Convolved radiancé (in in equivalent brightness temperature) that would be measured by the instrument IASI, from 645 to 2760 cm\(^{-1}\) (test8).

5.1.1.2.2 Convolved Jacobians

Radiative transfer computation considers each middle of the layers \(pc(nl)\) delimited by the atmospheric vertical levels \(p(nl)\) and \(pl(nl+1)\) specified by the user. Output Jacobians are given for these specific layers.

The output unit for Jacobians depends on the user choice (see global variable UNIT in Table 4 of the appendix). The output unit in binary file is the computation unit \((W/(m^{2}.strd.cm^{-1}))\)/layer or \((W/(m^{2}.strd.cm^{-1})/(g/g)/layer))\): UNIT=5). For ASCII extraction, it can be converted into another available unit: Among the six possible units, we recommend the user to visualize Jacobians with normalized values, that is for UNIT=1: NedT at a reference temperature (usually 280K) in order to be independent of the temperature profile and per kilometre in order to be independent of the radiative transfer discretization. The corresponding unit for each Jacobian type is the following:

- Temperature: Kelvin (Nedt at tref) per Kelvin.Km;
- Gas mixing ratio: Kelvin (Nedt at tref) per Km for 10% variation of the mixing ratio;
- Emissivity: Kelvin (Nedt at tref) for 1% variation.

However, the user is free to visualize Jacobians in any other unit by converting it with his/her own tool.
Important note:
The convolved Jacobians with respect to the surface emissivity are contained in the file for the Jacobians with respect to gas mixing ratio $\text{dcj4a}\$(\text{ATMPROF})\$(\text{ATM})(\text{RSTR})\$(\text{RSCA})(\text{INS})(\text{CASE})\text{b1.plt}$. At the surface level (nl=level2), the Jacobians in gas mixing ratio ccjac do not exist. At the surface level, ccjac is set to the Jacobian with respect to the surface emissivity.

5.1.2. Statistics tool

A statistics tool is available for the computation of the difference between two spectra and the corresponding statistics (see section II.1.2.10 in the reference documentation for the source code description). It does work for convolved spectra only and both spectra must be sampled with the same sampling step.

As an example, here is a script which performs the required calculations that cause the statistics program to compute the difference between a spectrum to be compared stored in the file $\text{spc4a}(\text{SPC1}).\text{ddb}$ and a reference spectrum stored in the file $\text{spc4a}(\text{SPC2}).\text{ddb}$.

Now, make a new copy of the run shell script (in your scripts directory):

```
cp run4a_test8 run4a_test8b
```

Then, edit directly the command line in the new run shell script to change the atmospheric profile from 0001 to 0002:

```
set ATMPROF=0002
```

Then, simply run the script:

```
./run4a_test8b
```

Then, you can compute the difference between 4A/OP outputs of test8 and test8b.

Create a new script file (as above) by replacing the command line by the following line:

```
make -f makefile runstatanalys TREF=280 WCLASS=50 WNMIN=645 WNMAX=2760 SPC1=0002test8iasi1c SPC2=0001test8iasi1c
```

See the complete list of simulation definition parameters in table 7 of the reference documentation (Section 5.2.5.1).

Two ASCII files are generated and stored in the directory outputascii:

- stat_{$\text{SPC1}}$_{$($$\text{SPC2}$).\text{plt}}$: difference in radiance and in NedT
- classstat_{$\text{SPC1}}$_{$($$\text{SPC2}$).\text{plt}}$: statistical characteristics of the difference per wave number class with the width WCLASS.

The output format of these files is described in the reference documentation in Section 5.3.4. Use your favourite graphics software to read the two files $\text{stat}_0002test8iasi1c_0001test8iasi1c.plt$ and $\text{classstat}_0002test8iasi1c_0001test8iasi1c.plt$.
5.2. Outputs in the GUI mode

The visualization displays Gnuplot graphs of results that are the spectra, Jacobians (if they are calculated) and transmittances (if they are extracted). The “Print” entry (figure below) appears directly from the graph and allows to save it in a file (postscript, png or gif file).

![Figure 20: Screenshot of the window that appears by choosing the menu “Visualization / Spectrum in ...”.

The visualization can also display Gnuplot graphs of used atmospheric profiles and the difference between two spectra.

5.2.1. Zoom

The user can select a new visualization range by zooming on the graph with the right mouse button. To go back to the previous range, the user can simply type "p" on the Gnuplot window.

5.2.2. User specific plots

You can personalize the graphs produced by the GUI. To do that:

1. Copy the default Gnuplot scripts which are installed in the directory gnuplot of the GUI installation. Put them on your own directory. Be sure that these scripts keep their original names;
2. Edit these scripts to fit your needs using standard Gnuplot commands;
3. Modify the field “Gnuplot scripts directory” in the “Preferences” window (menu “File/Preferences”) to point at the directory of your Gnuplot scripts.

Original Gnuplot scripts contain some special codes used by the GUI which are names of variables that are substituted when the graph is actually plotted. They begin with the sign $ (dollar). For example, $dataFile is replaced by the name of the 4A/OP output file to plot.

5.2.3. Examples

Prepare the simulation in GUI mode (see section 0) according to the configuration in test 1 (see section 5.1.1.1): viewing the results will lead to a graphical output identical to Figure 21.
Figure 21: Screenshot of the Gnuplot window showing an example of a spectrum resulting from the current simulation. This window appears by choosing the menu entry "Visualization / Spectrum in radiance". The name of the ASCII file (*.plt) storing the spectrum is below the title "4A/OP – Spectrum".

Now, prepare the simulation in GUI mode by opening an existing parameter file (see section 3.2.2) that corresponds to example 2. In the "Spectral conditions" panel, enables the “Jacobian calculation” and choose as “Jacobian unit” the item “K (NedT at Tref)”. Viewing the results will lead to a graph identical to Figure 22. Clicking on right mouse button will enable you to zoom in and restrain the selected range of wave numbers (Figure 23).
Figure 22: Screenshot of the Gnuplot window showing an example of Jacobians with respect to the temperature. This Gnuplot window appears by choosing the menu entry "Visualization / Jacobians (temperature)."

Figure 23: Same as Figure 22 for a selected range obtained by zooming on the graph with the right mouse button.
6. Generating your own 4A/OP input files

6.1. Atmospheric profiles

A preprocessing program of 4A, atmformat, is able to convert user-defined atmospheric profiles written in ASCII files into a binary-formatted database, that is then an input to 4A. This binary database, is named atm4a$ATM.ddb ($ATM has been defined in the global variables, section 3.1.1) and placed in the directory model/datatm.

By default, 4A/OP uses the file atm4atest.ddb built as follows:

- the default pressure levels come from file pressions4A.dsf, placed in the datatm directory of the system installation;
- the reference thermodynamical parameters (temperature, H$_2$O and O$_3$) are those from file atm4atest.dsf, in your datatm directory;
- the default gas concentrations also come from file gascon.dsf also in your datatm directory.

Now, see how to input user-defined atmospheric profiles on user-defined pressure levels.

Two steps are needed to achieve this. You have to:

1. define your own ASCII formatted file atm4a$ATM.dsf;
2. modify the lecatmdsf.f90 module in your srclib directory according to your own format.

6.1.1. First step: preparation of the user atmosphere file

This step allows you to prepare your own-designed atm4a$ATM.dsf file in ASCII format; This file has to be put in your datatm directory.

This file needs to contain the following parameters (given here with the variable name in Fortran syntax) (see for example in your datatm directory how is written the ASCII sample file atm4atest.dsf):

- tsol and psol: the surface temperature and pressure;
- nbcor: the number of involved molecules of user-defined gas profiles;
- idcor(1:nbcor): indentation numbers of the molecules (according to the GEISA notation) corresponding to the user-defined gas profiles. You are free to specify any gas mixing ratio profile provided that this gas is defined in the GEISA database;
- nlevel: number of pressure levels;
- p(1:nlevel): the user-defined pressure levels in hPa;
- t(1:nlevel): the user-defined temperature profile in Kelvin;
- rolvl(1:nlevel,idcor(1:nbcor)): the user-defined gas mixing ratio profiles in g/g.

These parameters can be repeated for several atmospheric profiles, of user-defined number equal to nopro.
6.1.2. Second step: modification of the appropriate atmosphere reading subroutine

This step consists in modifying the lecatmdsf.f90 module to read correctly your atm4a$ATM.dsf.

Open the lecatmdsf.f90 module. This routine needs to be fed with the parameters defined previously. For example, for sample file corresponding to $ATM='test', following lines have been added in the module:

```fortran
! Atmosphere "test"
! ----------------
if (atm(1:4) == 'test') then
  read(jin1, *, end=2000) nopro, tsol, psol, sectta, &
  (t(i),i=1,40),(rolvl(i,1),i=1,40),(rolvl(i,3),i=1,40)
  iat = iat + 1
  nlevel = 40
end if
```

For a complete description of the content of the binary database for atmospheric profiles (atm4a$ATM.ddb), please refer to the reference documentation (Section 5.2.1).

6.2. Spectral emissivity

The files describing the infrared surface emissivity spectrum for different types of surface used for a 4A/OP run are placed in the directory model.datemis. A readme.txt file explains the emissivity files.

These files can also be either user-defined or default files can be used.

Two types are possible for surface emissivity files here named spemisXXX.dat:

- a constant emissivity file; the range of the file suffix value XXX is between 000 and 100, that correspond to a constant emissivity value of 0 and 1 respectively;
- a file containing spectral variable emissivities given on a range of wave numbers; the file suffix value XXX has to be set superior to 100. The standard installation of 4A/OP contains the infrared surface emissivity spectrum deduced from Snyder et al. [Ref. 9] and presented in Table 3. Fourteen emissivity classes are defined, associated to the IGBP surface type classification: XXX is between 101 and 114.

You can add in the datemis directory your own-defined surface emissivity files, respecting the ASCII format of one of the two possible types:

- for new constant emissivities: you can copy one of the constant emissivity file in the datemis directory and change its second column to the constant emissivity value. Be sure the name of the new file is spemisXXX.dat where XXX is the new emissivity (i.e. 057 for a value of 0.57 for example). The corresponding emissivity suffix XXX should be in the range 000 – 100;
- for new spectral emissivities: you can add your own emissivity database, provided that the files are written in the right format (see files spemis101.dat to spemis114.dat for examples in your datemis directory) and the corresponding emissivity suffixes XXX are superior to 114.

For a complete description of the surface emissivity files, please refer to the reference documentation (Section 5.2.2).
IGBP surface properties classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Season</th>
<th>Snyder emissivity classes</th>
<th>EmissivityCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (17), Wetlands (11)</td>
<td>all</td>
<td>Water</td>
<td>101</td>
</tr>
<tr>
<td>Snow, Ice (15)</td>
<td>all</td>
<td>Snow, Ice</td>
<td>102</td>
</tr>
<tr>
<td>Barren/Desert (16)</td>
<td>all</td>
<td>Arid bare soil</td>
<td>103</td>
</tr>
<tr>
<td>Crops (12), Tundra (18)</td>
<td>all</td>
<td>Organic bare soil</td>
<td>104</td>
</tr>
<tr>
<td>Open shrubs (7)</td>
<td>F,W</td>
<td>Senescent sparse shrubs</td>
<td>105</td>
</tr>
<tr>
<td>Open shrubs (7)</td>
<td>Sp,Su</td>
<td>Green sparse shrubs</td>
<td>106</td>
</tr>
<tr>
<td>Savannah (9); Closed Shrubs, Grasslands, Crop/Mosaic (6,10,14)</td>
<td>W,Sp,F,W</td>
<td>Senescent grass savannah</td>
<td>107</td>
</tr>
<tr>
<td>Savannah (9); Closed Shrubs, Grasslands, Crop/Mosaic (6,10,14)</td>
<td>Su,F,Sp,Su</td>
<td>Green Grass Savannah</td>
<td>108</td>
</tr>
<tr>
<td>Woody Savannah (8)</td>
<td>F,W</td>
<td>Senescent Woody Savannah</td>
<td>109</td>
</tr>
<tr>
<td>Woody Savannah (8)</td>
<td>Sp,Su</td>
<td>Green Woody Savannah</td>
<td>110</td>
</tr>
<tr>
<td>Deciduous broadleaf and Mixed forest (4,5)</td>
<td>F,W</td>
<td>Senescent Broadleaf Forest</td>
<td>111</td>
</tr>
<tr>
<td>Deciduous broadleaf and Mixed forest (4,5); Evergreen Broadleaf Forest (2)</td>
<td>Sp,Su,all</td>
<td>Green Broadleaf Forest</td>
<td>112</td>
</tr>
<tr>
<td>Deciduous Needle Forest (3)</td>
<td>F,W</td>
<td>Senescent Needle Forest</td>
<td>113</td>
</tr>
<tr>
<td>Deciduous Needle Forest (3); Evergreen Needle Forest (1)</td>
<td>Sp,Su,all</td>
<td>Green Needle Forest</td>
<td>114</td>
</tr>
</tbody>
</table>

Table 3: Emissivity class definition (adapted from Snyder et al., 1998).

6.3. Instrument Spectral Response Function (ISRF)

The file describing the instrument functions used for a 4A/OP run are placed in the directory `model/isrf`. Pre-processing of the instrument functions is quite similar to pre-processing of atmospheric profiles: starting from a user-defined ASCII formatted file `isrf(INS)(CASE).dsf`, the subroutine `lecifctdsf` converts it into a binary file named `isrf(INS)(CASE).dorb`, that can be interpreted by 4A. This subroutine is contained in the fortran file named `ifct(INS)(CASE).f90`.

Three types of instrument are possible: radiometer, interferometer or spectrometer. The second category of instrument is divided into two types: a constant sampling step and a non constant sampling step in wavenumber. An example of a radiometer ISRF is contained in the file `isrftest.dsf` (in the directory `model/isrf`), an example of an interferometer/spectrometer ISRF with a constant sampling step is given by the file `isrftest2.dsf` and an example of an interferometer/spectrometer ISRF with a non constant sampling step is given by the file `isrfaurs0802.dsf`
6.3.1. **First step: preparation of the user ISRF file**

You need to set up your file \texttt{isrf(INS)(CASE).dsf}. Be careful that:

1. The file name has to correspond to the instrument name \texttt{INS} (and optionally to the version of the instrument specified by the variable \texttt{CASE}). For example, if \texttt{$INS=instru}$ and \texttt{$CASE$} not used (empty character string), the name of the file is: \texttt{isrfinstru.dsf}. It is placed in the directory \texttt{isrf};
2. Then it is recommended to include a header in the file as in the ASCII file \texttt{isrf\texttt{test.dsf}} for example.
 a. First line: number of total functions.
 b. Line above each function: index number of the function, corresponding central wave number, number of description points of the function (number of samplings).
 c. The entire definition spectral domain of the functions has to be included in the limits of the radiative transfer simulation. The entire spectral domain of the functions are defined by the first and last central wave numbers and the function width.

6.3.2. **Second step: preparation of the appropriate ISRF reading subroutine**

The user has to prepare the corresponding reading subroutine \texttt{lecifcdsf} located in the file named \texttt{ifct$(INS).f90}. The easiest way is to take as an example an existing subprogram, for example \texttt{ifcttest.f90}:

1. In the directory \texttt{srclib}, the user has to copy \texttt{ifcttest.f90} in \texttt{ifctinstru.f90}.
2. Then, it is recommended to edit the new file in order to correct some parameters if it is necessary in particular:
 a. the ISRF sampling step: change the variable \texttt{pdnuco} (0.1) into the user-defined sampling step value.
 b. the convolution type: change the variable \texttt{itypeconv} into the user-defined convolution type value. The value of \texttt{itypeconv} is chosen among 3 possibilities: \texttt{CONV_RADIOMETER}, \texttt{CONV_INTERF_CS} and \texttt{CONV_INTERF_NCS}. These constants are defined in the module \texttt{instruments}:
 i. \texttt{CONV_RADIOMETER}: used in case of a radiometer with \texttt{n} channels (Météosat, HIRS...);
 ii. \texttt{CONV_INTERF_CS}: used in case of an interferometer/spectrometer with a constant sampling step in wave number (IASI: step = 0.25cm$^{-1}$,...);
 iii. \texttt{CONV_INTERF_NCS}: used in case of an interferometer/spectrometer with a non constant sampling step in wave number (AIRS,...).

Now, all is ready to compile and create automatically the binary file at the execution of the program 4A by specifying the correct instrument function name ("\texttt{instru}" in our example). Indeed the ISRF formatting program \texttt{ifct} (conversion from ASCII to 4A binary format) is compiled with the correct reading subroutine (\texttt{ifct$(INS).f90}) corresponding to the specified instrument \texttt{INS} at the moment of the execution of the program 4A The instrument function binary file is created (\texttt{isrfinstru.ddb}) and passed to 4A as an input.
6.4. **Aerosol/cloud physical parameters**

The files describing aerosol/cloud physical parameters, separately for a given aerosol model/cloud type, are placed in the directory `model/datscat`. The nomenclature is `aerosols_XXXX.dat`, where `XXXX` is the identifier of the aerosol model/cloud type, from top to bottom layer (`XXXX` should be of maximum 6 characters length).

These files can also be either user-defined or default files can be used. Files for 12 aerosol models are included in the software package (Part I.[Ref. 10]).

You can add in the `datscat` directory your own-defined aerosol physical parameters files, respecting the following ASCII format:

You can copy one of the aerosol physical parameters file in the `datscat` directory and change at the 16th line of the header, the value corresponding to the reference aerosol/cloud optical depth at 1000 cm-1 and from the 25th line, the nine columns corresponding to:

- the wavelengths for which aerosol model properties are provided;
- the extinction coefficient;
- the scattering coefficient;
- the absorption coefficient;
- the single scattering albedo;
- the asymmetry parameter;
- the normalized extinction coefficient;
- and the real and imaginary part of the refractive index.

Be sure the name of the new file is `aerosols_XXXX.dat`. For a complete description of the aerosol/cloud physical parameters files, please refer to the reference documentation (Section 5.2.4).
7. Appendix : Simulation definition parameters

7.1. Global variables

Global variables are initialized through the run script file and are passed to the file makefile. They are listed in the table below. Please, also refer to section 5.2.5.1 in the Reference Documentation.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Descriptive Name</th>
<th>Type</th>
<th>Units</th>
<th>Source / Destination</th>
<th>References / Remarks</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radiative transfer computation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOB</td>
<td>Indicator of the program to use</td>
<td>string</td>
<td>-</td>
<td>makefile</td>
<td>JOB is fixed to 4a</td>
<td>4a</td>
</tr>
<tr>
<td>ATM</td>
<td>Indicator of the atmospheric database stored in the file atm4a$(ATM).ddb</td>
<td>char</td>
<td>-</td>
<td>makefile / directory datam</td>
<td>(Presently, possible values are test, test2, satigr_v4.0_moyclas: TIGR atmosphere type)</td>
<td>test</td>
</tr>
<tr>
<td>ATMPROF</td>
<td>Index of the atmospheric profile read in the atmospheric database stored in the file named datatm/atm4a$(ATM).ddb. The range of profile indexes and their meaning depend on the atmospheric database.</td>
<td>int</td>
<td>-</td>
<td>makefile</td>
<td></td>
<td>0001</td>
</tr>
<tr>
<td>RSTR</td>
<td>Indicator of the parameter file para4a$(RSTR).dtp</td>
<td>char</td>
<td>-</td>
<td>makefile / directory input</td>
<td>(Presently, possible values are test1 to test14)</td>
<td>NA</td>
</tr>
<tr>
<td>RSCA</td>
<td>Indicator of the aerosol parameter file parascat$(RSCA).dtp</td>
<td>char</td>
<td>-</td>
<td>makefile / directory input</td>
<td>if empty string: no aerosol is considered</td>
<td>NA</td>
</tr>
<tr>
<td>RESOL</td>
<td>Indicator of the resolution of atlases described in the file atl$(RESOL)index.dsf</td>
<td>char</td>
<td>-</td>
<td>makefile / directory data</td>
<td>(Presently, possible values are hr09, that corresponds to the high resolution atlas database using spectroscopic parameters from the GEISA 2009 edition)</td>
<td>hr09</td>
</tr>
<tr>
<td>INS</td>
<td>Indicator (name) of the simulated instrument (instrument function ISRF) stored in the file named isrf(INS)(CASE).ddb</td>
<td>string</td>
<td>-</td>
<td>makefile / directory isrf</td>
<td>Only used if the convolution is performed (presently, possible values are inf, test, test2, iasi1c)</td>
<td>inf</td>
</tr>
<tr>
<td>CASE</td>
<td>Indicator of the instrument function version (case) for a given instrument defined by the INS</td>
<td>char</td>
<td>-</td>
<td>makefile / directory isrf</td>
<td>(Presently, possible values are "")</td>
<td>" "</td>
</tr>
</tbody>
</table>
Reading the output of the radiative transfer and convert it into ASCII format

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Descriptive Name</th>
<th>Type</th>
<th>Units</th>
<th>Source / Destination</th>
<th>References / Remarks</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMIN</td>
<td>Beginning of the extraction for the conversion (in wave number)</td>
<td>r</td>
<td>cm$^{-1}$</td>
<td>makefile</td>
<td>NUMIN must be ≥ f_{orig} (see Table 5)</td>
<td>635</td>
</tr>
<tr>
<td>NUMAX</td>
<td>End of the extraction for the conversion (in wave number)</td>
<td>r</td>
<td>cm$^{-1}$</td>
<td>makefile</td>
<td>NUMAX must be ≤ f_{stop} (see Table 5)</td>
<td>2880</td>
</tr>
<tr>
<td>UNIT</td>
<td>Jacobian unit index for Jacobian ASCII outputs</td>
<td>i</td>
<td>-</td>
<td>makefile</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>TREF</td>
<td>Reference temperature for conversion into NedT</td>
<td>r</td>
<td>K</td>
<td>makefile</td>
<td></td>
<td>280</td>
</tr>
</tbody>
</table>

- **NUMIN**: Beginning of the extraction for the conversion.
- **NUMAX**: End of the extraction for the conversion.
- **UNIT**: Jacobian unit index for Jacobian ASCII outputs.
- **TREF**: Reference temperature for conversion into NedT.

Units

- **UNIT = 0**: NedT at T_{REF}
 - Kelvin per Kelvin.layer
 - Kelvin per layer for 1 g/g variation of the mixing ratio ρ_o
 - Kelvin for 1% variation of the surface emissivity
- **UNIT = 1**: NedT at T_{REF}
 - Kelvin per Kelvin.Km
 - Kelvin per Km for 10% variation of ρ_o
 - Kelvin for 1% variation of the surface emissivity
- **UNIT = 2**: Decibel
 - Decibel per Kelvin.Km
 - Decibel per Km for 10% variation of ρ_o
 - Decibel for 1% variation of the surface emissivity
- **UNIT = 3**: NedT at brightness temperature T_b
 - Kelvin per Kelvin.Km
 - Kelvin per Km for 10% variation of ρ_o
 - Kelvin for 1% variation of the surface emissivity
- **UNIT = 4**: NedT at T_b
 - Kelvin per Kelvin.layer
 - Kelvin per layer for 1 g/g variation of ρ_o
 - Kelvin for 1% variation of the surface emissivity
- **UNIT = 5**: Initial unit
 - W/(m2 str cm$^{-1}$) per Kelvin.layer
 - W/(m2 str cm$^{-1}$) per layer for 1 g/g variation of ρ_o
 - W/(m2 str cm$^{-1}$) for 100% variation of the surface emissivity
7.2. Run characterization parameters

The file containing the run parameters is named `para4a$RSTR.dtp`, where `$RSTR` is the value of the variable defining the experiment parameters, and it is stored in the directory `input`. The table below (Table 5) describes every parameter. Please, also refer to section 5.2.5.2 in the Reference Documentation.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Descriptive Name</th>
<th>Type</th>
<th>Units</th>
<th>Source / Destinati³</th>
<th>References / Remarks</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAA</td>
<td>Main run parameter that identifies the program to use</td>
<td>string (len=60 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>Only for information: not used</td>
<td>AAAA</td>
</tr>
<tr>
<td>GEOMID</td>
<td>Geometry type identifier</td>
<td>string (len=6)</td>
<td>-</td>
<td>Ini: para4a.dtp</td>
<td>LIMB or EVIEW</td>
<td>EVIEW</td>
</tr>
<tr>
<td>TRAJET</td>
<td>Viewing configuration. The various configurations are defined in Table 1 and illustrated by Figure 2 to Figure 5</td>
<td>string (len=6 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>UP, DOWNUP, DOWN, UPDOWN UP: nadir viewing DOWN: zenith viewing</td>
<td>UP</td>
</tr>
<tr>
<td>PZUP</td>
<td>TOA or cloud bottom pressure if GEOMID = ‘EVIEW’ TOA or cloud bottom height if GEOMID = ‘LIMB’</td>
<td>r</td>
<td>hPa</td>
<td>Ini: para4a.dtp</td>
<td>Only if “Earth view” and if pzdown undefined (negative): set pzdown to the surface pressure level read in the atmospheric database</td>
<td>0.05</td>
</tr>
<tr>
<td>PZDOWN</td>
<td>Surface or cloud top pressure if GEOMID = ‘EVIEW’ Surface or cloud top height if GEOMID = ‘LIMB’</td>
<td>r</td>
<td>hPa</td>
<td>Ini: para4a.dtp</td>
<td>pzdow ≤pzup ≤pzobs ≤pzdown</td>
<td>1013.25</td>
</tr>
<tr>
<td>PZOBS</td>
<td>Pressure at observation level Height at observation level</td>
<td>r</td>
<td>hPa</td>
<td>Ini: para4a.dtp</td>
<td>if geomid = ‘EVIEW’: pzup ≤pzobs ≤pzdown if geomid = ‘LIMB’: pzdown ≤pzobs ≤pzup</td>
<td>0.05</td>
</tr>
<tr>
<td>EMUP</td>
<td>Index for the</td>
<td>r</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>Used if TRAJET≠UP</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4: Global variables initialised through the file makefile
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Descriptive Name</th>
<th>Type</th>
<th>Units</th>
<th>Source / Destination</th>
<th>References / Remarks</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>emissivity of the top level read in the file datemis/spemis$EMUP.dat</td>
<td>TUP</td>
<td>Temperature of the top level</td>
<td>r</td>
<td>K</td>
<td>Ini: parameter file para4a.dtp</td>
<td>4 K in general (cold space temperature) If top level temperature equal to 0, set to atmosphere database.</td>
</tr>
<tr>
<td>Index for the emissivity of the lower level read in the file datemis/spemis$EMDOWN.dat</td>
<td>EMDOWN</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>Used if TRAJECT ≠ DOWN</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Surface temperature (temperature of the lower level)</td>
<td>TDOWN</td>
<td>r</td>
<td>K</td>
<td>Ini: parameter file para4a.dtp</td>
<td>If TDOWN < 0 set to temperature of level2 If TDOWN=0: for level2 < nlevtam, TDOWN = temperature of level2 for level2 = nlevtam, TDOWN = surface temperature defined in the atmospheric database Else TDOWN=user input value</td>
<td>0.</td>
</tr>
<tr>
<td>Geometric tangent height</td>
<td>ZGTAN</td>
<td>r</td>
<td>km</td>
<td>Ini: para4a.dtp</td>
<td>Used if GEOMID= ‘LIMB’</td>
<td>0.</td>
</tr>
<tr>
<td>Angle type definition for sectta1, sectta2 and secttasun (see below). This variable are also detailed in Table 1 and illustrated in Figure 2 to Figure 5</td>
<td>TYP_ANG</td>
<td>string (len=6 max)</td>
<td>Ini: parameter file para4a.dtp</td>
<td>ANGLE, SECANT or UNDEF ANGLE: secttax=1/cos(secttax), x = 1, 2 or sun SECANT: secttax=secttax UNDEF: sectta1=0, sectta2=1.7434468, secttasun=0</td>
<td>ANGLE</td>
<td></td>
</tr>
<tr>
<td>Primary path angle (viewing angle) scaled to ground (altitude z=0). Or secant value</td>
<td>SECTTA1</td>
<td>r</td>
<td>degree</td>
<td>Ini: parameter file para4a.dtp</td>
<td>If TYP_ANG=SECANT, SECTTA1 must be ≥1 If TYP_ANG=UNDEF, SECTTA1 is set to 0 and then it is set to the value read in the atmosphere file datatm/atm4a$(ATM).ddb</td>
<td>0. new: sectta1 <1 or sectta1 ≥90° admitted</td>
</tr>
<tr>
<td>Secondary path angle (reflection incidence angle) at z=0.</td>
<td>SECTTA2</td>
<td>r</td>
<td>degree</td>
<td>Ini: parameter file para4a.dtp</td>
<td>Used if TRAJECT = DOWNDUP or UPDOWN</td>
<td>55.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Descriptive Name</td>
<td>Type</td>
<td>Units</td>
<td>Source / Destinat(^{\circ})</td>
<td>References / Remarks</td>
<td>Default value</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Or secant value</td>
<td></td>
<td>r</td>
<td>-</td>
<td></td>
<td>If TYP(_{ANG})=SECANT, SECTTA2 must be ≥1</td>
<td></td>
</tr>
<tr>
<td>Or secant value</td>
<td></td>
<td>r</td>
<td>-</td>
<td></td>
<td>If TYP(_{ANG})=UNDEF, SECTTA2 is set to 1.7434468 (\cos(55^\circ))</td>
<td></td>
</tr>
<tr>
<td>Solar zenith angle</td>
<td></td>
<td>r</td>
<td>degree</td>
<td></td>
<td>Used if TRAJET= DOWN or DOWNUP</td>
<td></td>
</tr>
<tr>
<td>Solar zenith angle</td>
<td></td>
<td>r</td>
<td>degree</td>
<td>Ini: parameter file para4a.dtp</td>
<td>If TYP(_{ANG})=SECANT, SECTTASUN must be ≥1</td>
<td></td>
</tr>
<tr>
<td>Solar zenith angle</td>
<td></td>
<td>r</td>
<td>degree</td>
<td>Ini: parameter file para4a.dtp</td>
<td>If TYP(_{ANG})=UNDEF, SECTTASUN is set to 0.</td>
<td></td>
</tr>
<tr>
<td>Solar zenith angle</td>
<td></td>
<td>r</td>
<td>degree</td>
<td>Ini: parameter file para4a.dtp</td>
<td>To suppress the solar contribution, specify SECTTASUN outside [0,90] deg.</td>
<td></td>
</tr>
<tr>
<td>Solar zenith angle</td>
<td></td>
<td>r</td>
<td>degree</td>
<td>Ini: parameter file para4a.dtp</td>
<td>Natural values are [0.98, 1.02]</td>
<td></td>
</tr>
<tr>
<td>Solar zenith angle</td>
<td></td>
<td>r</td>
<td>degree</td>
<td>Ini: parameter file para4a.dtp</td>
<td>if < 0: computed in atmsh through barometric height formula</td>
<td></td>
</tr>
<tr>
<td>ESDDIST</td>
<td>Earth-Sun distance in astronomical units</td>
<td>r</td>
<td>astro. units</td>
<td>Ini: parameter file para4a.dtp</td>
<td>YES or NO</td>
<td>1</td>
</tr>
<tr>
<td>REFRA</td>
<td>Refraction computation identifier</td>
<td>string (len=6)</td>
<td>-</td>
<td>Ini: para4a.dtp</td>
<td>YES or NO</td>
<td>NO</td>
</tr>
<tr>
<td>ZATMBOT</td>
<td>Height of lower atmospheric level</td>
<td>r</td>
<td>km</td>
<td>Ini: para4a.dtp</td>
<td>if < 0: computed in atmsh through barometric height formula</td>
<td>0.</td>
</tr>
<tr>
<td>CONTIN</td>
<td>Continua (H(_2)O, N(_2), O(_2)) contribution</td>
<td>string (len=6 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>YES or NO</td>
<td>YES</td>
</tr>
<tr>
<td>CONTIN</td>
<td>Continua (H(_2)O, N(_2), O(_2)) contribution</td>
<td>string (len=6 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>If yes, the continua of the selected molecules (IDSEL=1) contribute to the radiative transfer computation</td>
<td>YES</td>
</tr>
<tr>
<td>RESPEC</td>
<td>Spectral resolution: contraction of the spectra before convolution or to define the spectral discretization with an "infinite" resolution simulation</td>
<td>r</td>
<td>cm(^{-1})</td>
<td>Ini: parameter file para4a.dtp</td>
<td>If RESPEC<5.10(^{-4}): - For CONV=YES, the resolution for the computation = 5.10(^{-4}) - For CONV=NO, the resolution for the computation = Atlas resolution Else RESPEC = user input value</td>
<td>0.00</td>
</tr>
<tr>
<td>RESPEC</td>
<td>Spectral resolution: contraction of the spectra before convolution or to define the spectral discretization with an "infinite" resolution simulation</td>
<td>r</td>
<td>cm(^{-1})</td>
<td>Ini: parameter file para4a.dtp</td>
<td>- For CONV=YES, the resolution for the computation = 5.10(^{-4}) - For CONV=NO, the resolution for the computation = Atlas resolution Else RESPEC = user input value</td>
<td>0.00</td>
</tr>
<tr>
<td>FORIG</td>
<td>First wave number of the simulation</td>
<td>r</td>
<td>cm(^{-1})</td>
<td>Ini: parameter file para4a.dtp</td>
<td>FORIG must be ≥ forig_atlas*</td>
<td>600.</td>
</tr>
<tr>
<td>FSTOP</td>
<td>Last wave number of the simulation</td>
<td>r</td>
<td>cm(^{-1})</td>
<td>Ini: parameter file para4a.dtp</td>
<td>FSTOP must be ≤ fstop_atlas*</td>
<td>3000.</td>
</tr>
<tr>
<td>DELDS</td>
<td>Width of each Atlas spectral band</td>
<td>r</td>
<td>cm(^{-1})</td>
<td>Ini: parameter file para4a.dtp</td>
<td>generally 15 cm(^{-1})</td>
<td>15.</td>
</tr>
<tr>
<td>INTOPT</td>
<td>Indicator for interpolation in temperature of the optical thicknesses</td>
<td>string (len=6 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>YES or NO Note: If no, the computation time is decreased but the results are deteriorated</td>
<td>YES</td>
</tr>
<tr>
<td>INTOPT</td>
<td>Indicator for interpolation in temperature of the optical thicknesses</td>
<td>string (len=6 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>YES or NO Note: If no, the computation time is decreased but the results are deteriorated</td>
<td>YES</td>
</tr>
<tr>
<td>CONV</td>
<td>Indicator of convolution with the ISRF</td>
<td>string (len=6 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>YES or NO ("infinite" resolution)</td>
<td>NO</td>
</tr>
<tr>
<td>Symbol</td>
<td>Descriptive Name</td>
<td>Type</td>
<td>Units</td>
<td>Source / Destinat°</td>
<td>References / Remarks</td>
<td>Default value</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>HOLE</td>
<td>Indicator of hole algorithm use for the convolution (see Part III 1.4 in Reference Documentation Part I.[Ref. 10]</td>
<td>string (len=6 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>YES or NO</td>
<td>NO</td>
</tr>
<tr>
<td>SHIFT</td>
<td>Indicator of a spectral shift introduction due to the ISRF</td>
<td>string (len=6 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>YES or NO Only used if CONV=YES If yes, a spectral shift is applied due to ISRF not centred</td>
<td>NO</td>
</tr>
<tr>
<td>RNU</td>
<td>Value of the global spectral shift</td>
<td>r cm⁻¹</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>Only used if CONV=YES Application of a possible global spectral shift of the spectra if RNU ≠ 0</td>
<td>0.</td>
</tr>
<tr>
<td>PASCON</td>
<td>Convolution step: step of the ISRF application</td>
<td>r cm⁻¹</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>Only used if CONV=YES Must be consistent with the instrument function file header; PASCON only used if itypeconv=2 (see §6.3) it must be >RESPEC</td>
<td>0.</td>
</tr>
<tr>
<td>FPOID</td>
<td>Transmittance calculation flag</td>
<td>string (len=6 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>YES or NO Jacobians and transmittances are not permitted if CONV=NO</td>
<td>NO</td>
</tr>
<tr>
<td>JACOB</td>
<td>Jacobian calculation flag</td>
<td>string (len=6 max)</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>YES or NO If JACOB=YES: - INTOPT must be YES - The Jacobian with respect to the temperature is always calculated. - The Jacobian with respect to the mixing ratio is calculated if the corresponding indicator is equal to 1 (see IDSEL and idjac below)</td>
<td>NO</td>
</tr>
<tr>
<td>IDSEL</td>
<td>Table to select molecules among the 42 gases available in the GEISA database and 3 CFCS coded between 61 to 63</td>
<td>int[63]</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>1 or 0 1=yes 0=no</td>
<td>0, ...</td>
</tr>
<tr>
<td>ROCOEF</td>
<td>Table of weighting coefficients for the mixing ratio of the gases and CFCS</td>
<td>r[63]</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>0 ≤ ROCOEF</td>
<td>1.0, ...</td>
</tr>
<tr>
<td>IDJAC</td>
<td>Table to select the calculation of the Jacobian for each gas in the 42 available gases and 3 CFCS</td>
<td>int[63]</td>
<td>-</td>
<td>Ini: parameter file para4a.dtp</td>
<td>1 or 0 (yes or no) Warning: The Jacobian calculation of a molecule is effective only if the corresponding molecule</td>
<td>0, ...</td>
</tr>
<tr>
<td>Symbol</td>
<td>Descriptive Name</td>
<td>Type</td>
<td>Units</td>
<td>Source / Destination</td>
<td>References / Remarks</td>
<td>Default value</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>------</td>
<td>-------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>is selected too (idsel=1)</td>
</tr>
</tbody>
</table>

Table 5: Run characterization parameters read in the file para4a.dtp
7.3. Directory description

Diagram 1: Directory description of 4A/OP (* for several files).
8. References

